

Fares and NeTEx Workshop

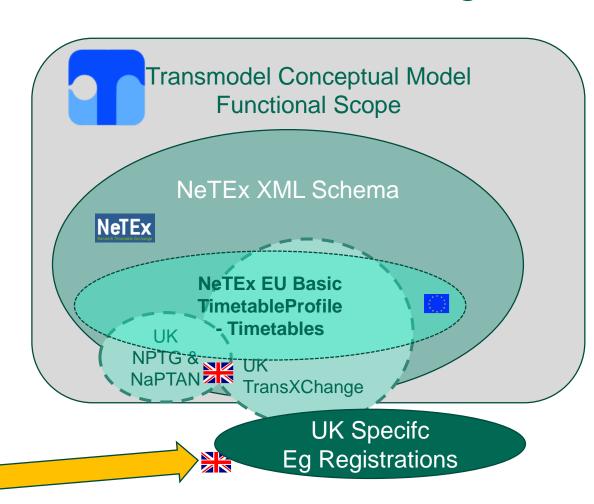
London 6th November, Manchester 7th November, 20

Stops, Routes and Timetables for UK NeTEx Timetable profiles

Objectives

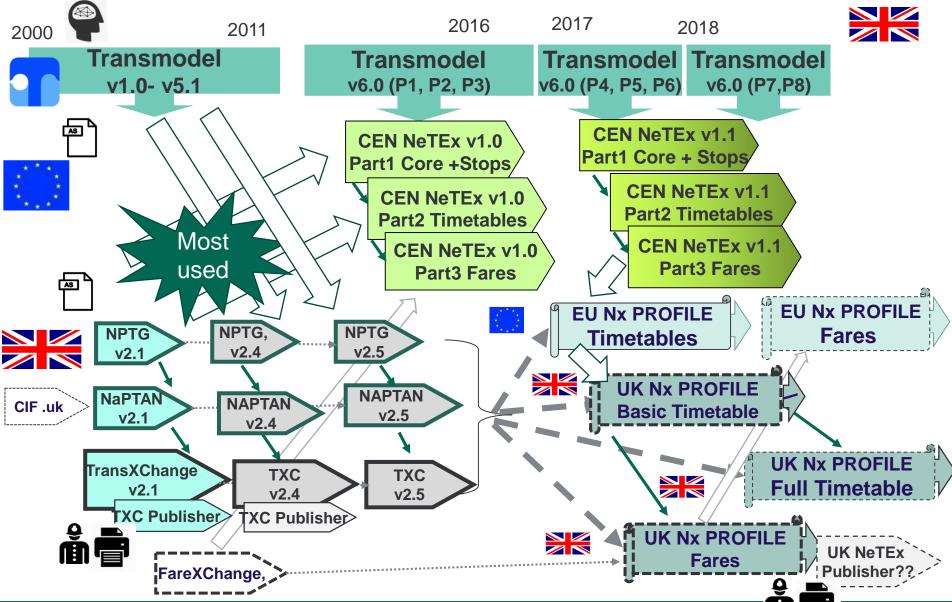
- Discuss use of stops routes and fares for a Basic UK timetable NeTEx Profile
- Outline issues for a Full UK timetable NeTEx Profile equivalent to current TransXChange function
- Get Feedback from you as to what scope of full UK profile should be ,

Using NeTEx for Stop, route & Timetable data


Introduction

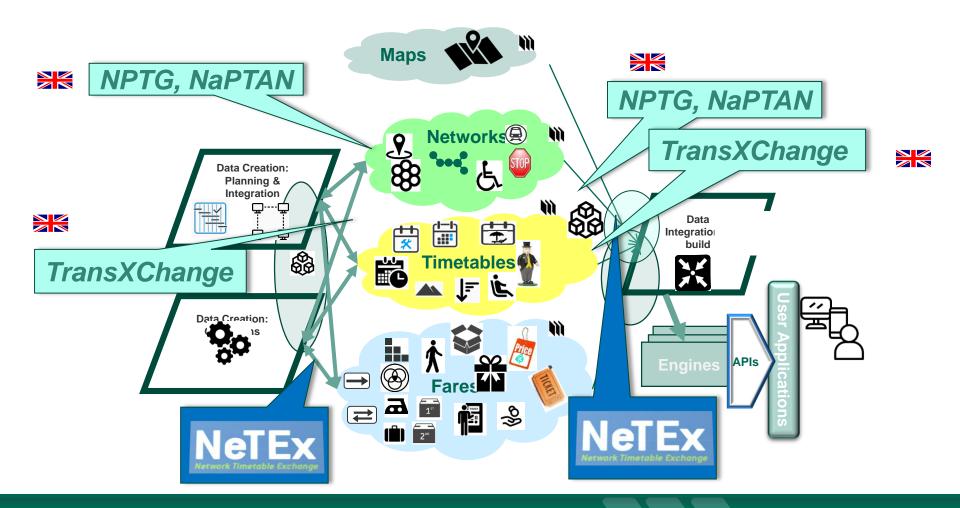
Comparing TransModel, NeTEx and NPTG/ NaPTAN / TransXChange

- Transmodel covers many PT functional domains
 - Networks, Scheduling, Operations, Fare Management, Driver management, etc
- NeTEx implements just a subset of Transmodel
 - Stops, Timetables, Fares, etc
- EU Basic NeTEx profile covers a subset of NeTEx
 - Stops, Timetables, Interchanges, etc
- TransXChange covers timetables
- TransXChange includes some TM NeTEx elements not in EU Basic Profile
 - Data elements for Operations, etc
 - Operations, etc
 - Calls, Sections, tc
- TransXChange includes some UK specific concepts not in Transmodel or NeTEx
 - EBSR registration info, etc



Likely Phasing

- 1. UK Basic Fares Profile (2018/19)
 - Use of NaPTAN, NPTG & TXC data as needed in a UK NeTEx Timetable profile
- 2. UK Basic Timetable Profile (2018/19)
 - A basic mapping of NaPTAN & TransXChange into the EU NeTEx Minimum timetable profile
- 3. UK Strategic Timetable Mapping (2019/20)
 - A full mapping of TransXChange into a UK NeTEx Timetable profile as a strategic representation for UK Stop & Timetable data


NeTEx – and UK National Standards

A gradual Transition – can interoperate NaPTAN / TXC & NeTEx, both Upstream and Downstream

Representation of Journeys

Use of CALLS

- ▶ EU NeTEx Timetable Profile is fully normalised diffuses data over several places
 - Does not use CALLS (Although NeTEx has these
- ▶ TransXChange uses CALLs a view to combine several data elements together
 - More convenient for consuming applications.
- Should we completely denormalise (have separate PASSING TIMEs, POINTs IN JOURNEY PATTERN etc)?
 - Should we still use CALLs? Should we exchange routes

Use of LINKs IN SEQUENCE vs POINTs IN SEQUENCE

- ▶ TransXChange represents journeys and patterns as LINKs IN PATTERN; this is more complex to understand than POINTs in PATTERN - should we changeover?
 - Same overall content

Use of TIMING INFORMATION

- TransXChange mapping is slightly denormalised (e.g. use of combined timing and journey pattern links), so we need separate timing patterns, or just JOURNEY PATTERN
- TransXChange uses detailed Link Projection references between layers (Mainly to ensure validity conditions are inherited correctly) not needed?
- TransXChange uses SECTIONs to reduce volume of JOURNEY PATTERNS
 - Complex should we drop? (Many users don't use)

Developing a Full Timetable profile Technical options

- Technical Considerations
 - ▶ All TXC data can be represented in NeTEx (except UK EBSR Registrations)
 - But Not all TXC data is covered by EU Basic profile
 - ▶ Some TXC data structures **need** to be transformed to a revised model in NeTEx
 - ▶ Some TXC data structures **could or should** be represented differently in NeTEx
- Practical considerations
 - If we are changing anyway, we should review and simplify TXC overall
- Goals for a full UK profile
 - ▶ Where possible, keep close to current TXC
 - Where possible drop unused elements from TXC
 - ▶ Where useful, simplify representation from TXC ?
 - Where required include new function

UK Timetable NeTEx Profile

EU Basic Timetable Profile

19

EU Basic Timetable Profile

- ▶ Minimal: Can be summarised on seven diagrams
 - ▶ Network: (2)
 - Stops, Lines & Routes, Service Patterns
 - ▶ Timetables: (3)
 - Vehicle Journeys (As Points in pattern), +Compound Journeys
 - Day Types . Service Calendars:
 - ▶ Accessibility: (1)
- ▶ Key Differences from TransXChange representation
 - No TIMING PATTERNS, just the passing times
 - No operational data
 - DEAD RUNS, LAYOVER POINTS, BLOCKS, VEHICLE TYPE, DUTY CREWS, REVERSING MANOEVRES, etc
 - ▶ Added capability:
 - Accessibility, COUPLED JOURNEYS

EU Basic Timetable Profile -Key Differences from TXC representation

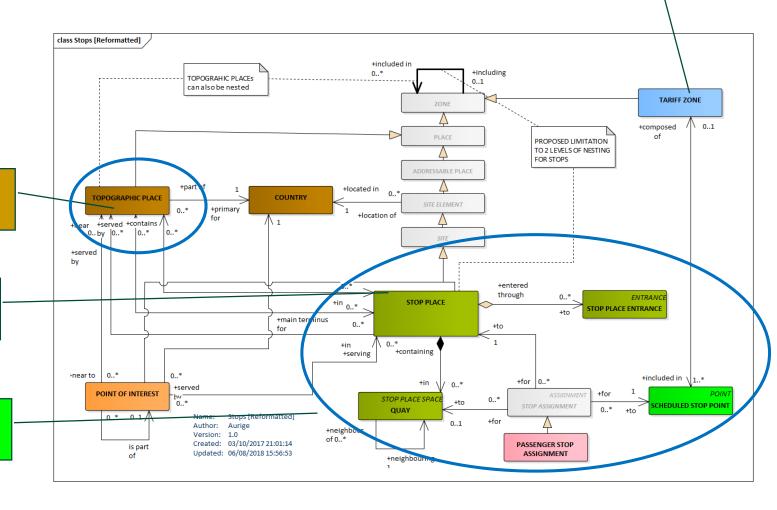
Functional

- No TIMING PATTERNs, timings, just the resolved passing times
- No operational data
 - □ DEAD RUNS, LAYOVER POINTS, BLOCKS, DUTY CREWS, Ticket Machine Codes, etc.
- No EBSR Registration elements
 - Registration, VOA numbers, Licences etc, Service Classification, Service Infor, etc,

Representational

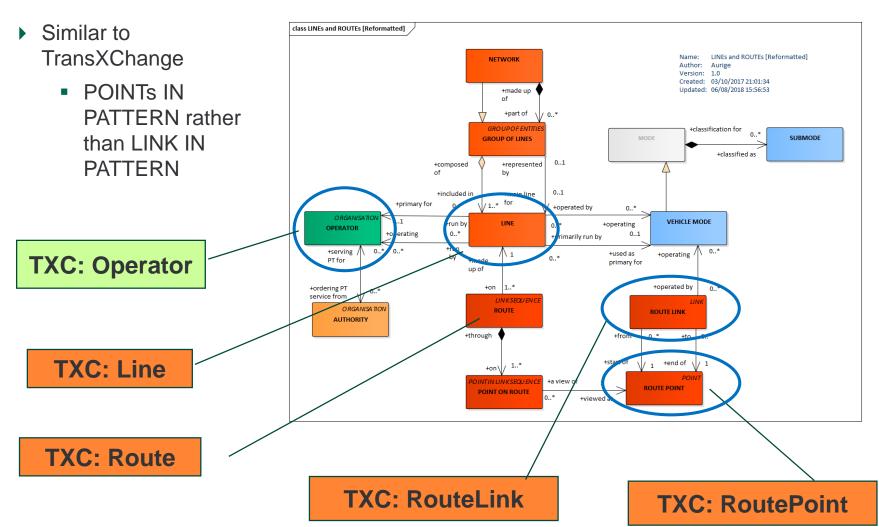
- POINT IN PATTERN representation of Service patterns, journey patterns, journeys
 - ☐ (No CALLs, POINTs rather than LINKS, etc)
- No use of SECTIONs to reduce volume
- Separation of Time and Frequency/Headway based Journeys
- Simpler DAY Types
- ▶ Some Terminology differences, e.g.
 - TXC Service → TM TIMETABLE
 - TXC:Route → TM SERVICE PATTERN (And directiona)

EU Profile – 1. Stops

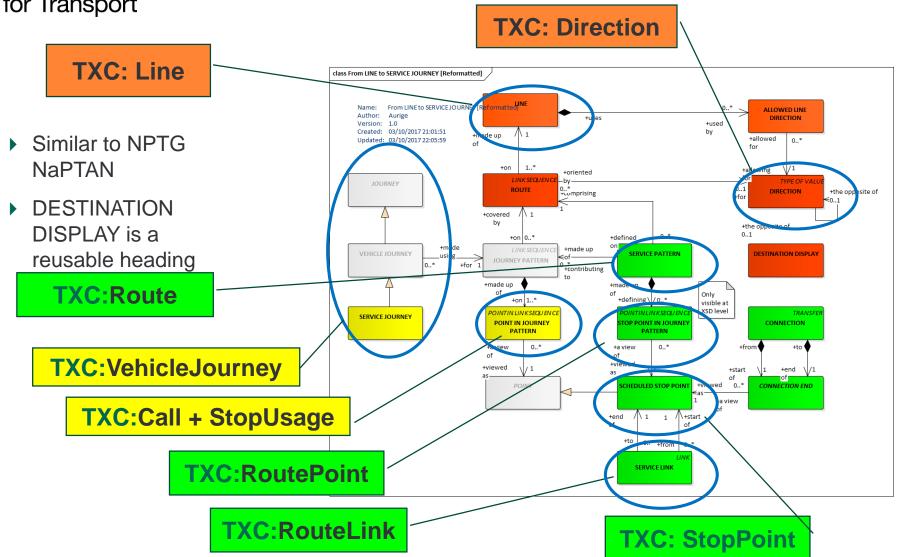

NPTG: PlusBusZone(

Similar to NPTG NaPTAN

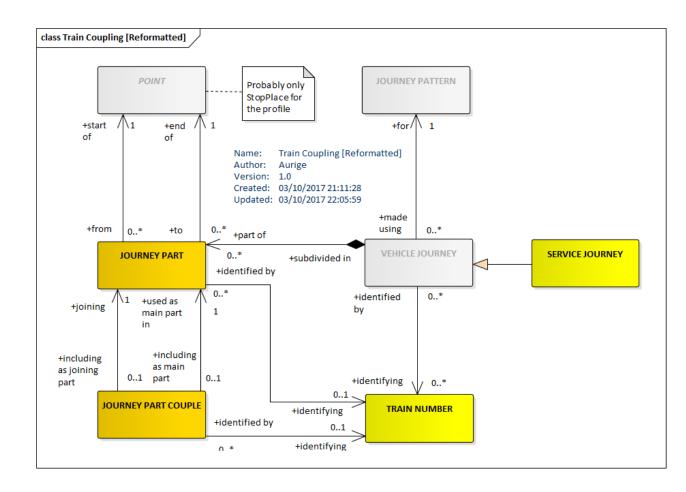
NPTG: Locality


Naptan: StopArea

Naptan: StopPoint

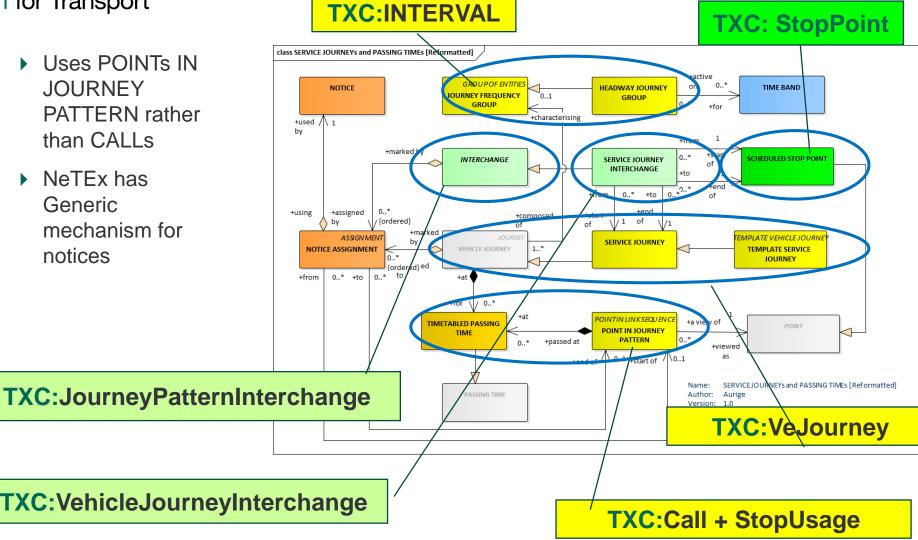


EU Basic Profile – 2. Lines and routes


EU Profile – 3. Service Patterns

EU Basic Profile – 5. Train Coupling

Not In TXC



EU Basic Profile – 5. Journeys & Passing times

Uses POINTs IN **JOURNEY** PATTERN rather than CALLs

NeTEx has Generic mechanism for notices

TXC:VehicleJourneyInterchange

EU Basic Profile – 6. Day Types & Service Calendar

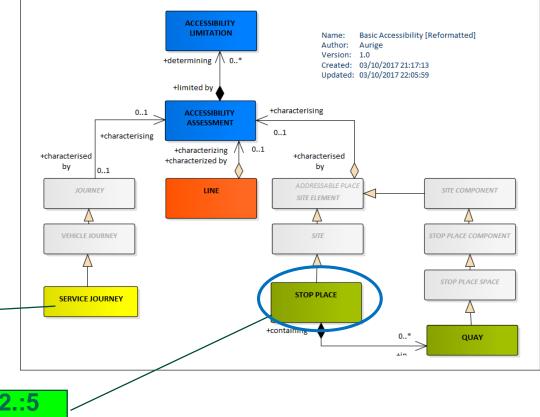
 Defines day types and mapping to calendar

Equivalent to TXC opera profile elements

class Calendars [Reformatted] +within Using the UIC DAY OF WEEK SERVICE CALENDAR **OPERATING PERIOD** extension introducing ValidDayBits +period for +defined by +used to define +for the definition of +defined as ASSIGN MENT +specifying +described by 0..* PROPERTY OF DAY **DAY TYPE** DAY TYPE ASSIGNMENT +specified by +used to describe +for /\\ 1..* Calendars [Reformatted] +worked on SERVICE JOURNEY Created: 03/10/2017 21:16:48 Updated: 03/10/2017 22:05:59

TXC:RegularDaytype, TXCPeriodic DayType

TXC:DaysOfWeek



EU Basic Profile - 7. Accessibility

class Basic Accessibility [Reformatted]

- Allows accessibility of Services, stop places and lines to be described
- ▶ Not in TXC 2.1,
- Some in NapTAN & TXC 2.5 but not populated?

TXCv2.:5
StopPoint

NaPTANv2.:5
StopPoint

Key Equivalences NPTG & NaPTAN to NeTEx TM

UK NPTG/ Naptan/TXC	Transmodel / NeTEx	Notes
Nptg:AdminArea	ADMINISTRATIVE ZONE + ORGANISATION PART	Link to any element using Responsibility
Nptg:NptgLocality	TOPOGRAPHICAL PLACE	
Nptg:PlusBusZone	FARE ZONE	
Naptan:StopPoint	STOP PLACE + QUAY + ACCESSIBILITY	Assigned to SCHEDULED STOP POINT for TXC
Naptan:StopArea	STOP PLACE	Assigned to SCHEDULED STOP POINT for TXC

Some Key Equivalences – TXC Network elements to NeTEx/TM Network elements

UK NPTG/ Naptan/TXC	Transmodel / NeTEx	Notes
Txc:StopPoint	SCHEDULED STOP POINT (STOP ASSIGNMENT + STOP PLACE + QUAY)	Revised representation st logical + Physical stop
Txc:StopArea	STOP AREA + STOP PLACE	
Txc:Operator	OPERATOR / AUTHORITY	Operator UK licences for Registration
Txc:Line	LINE	
Txc:Service (Standard Service, FlexibleService)	TIMETABLE FRAME	
(Service direction)	GROUP OF SERVICEs + DIRECTION + DAY TYPE	
Txc:OperatingProfile	DAY TYPE + PROPERTY OF DAY SERVICE + SERVICE CALENDAR + DAY TYPE ASSIGNMENT	Revised representation
Txc:LavoverPoint		
INCOMPLETE - NEEDS FURTHER DETAILS		

Key Equivalences – TXC: Journey Patterns to NeTEx/TM Journey Patterns

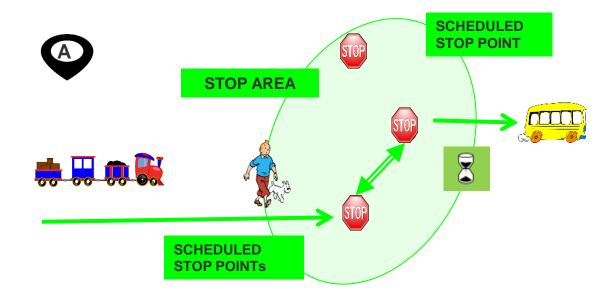
UK NPTG/ Naptan/TXC	Transmodel / NeTEx	Comment
Txc:Track	ROUTE LINK	
Txc:Route	SERVICE PATTERN	Named changed from TM 5.1
Txc:RouteSection	GENERAL SECTION	Could Drop Sections?
Txc:RouteLink	SERVICE LINK	
Txc:JourneyPattern	JOURNEY PATTERN + TIMING PATTERN	
Txc:JourneyPatternSection	GENERAL SECTION	Could Drop Sections?
Txc:JourneyPatternTimingLink + StopUsage	TIMING LINK + RUN TIME + WAIT TIME	
Txc:JourneyPatternInterchange	INTERCHANGE	

Key Equivalences – TXC:Journeys to NeTEx/TM Journeys

UK NPTG/ Naptan/TXC	Transmodel / NeTEx	Comment
Txc:VehicleJourney	VEHICLE JOURNEY	
Txc:VehicleJourneyTimingLink + StopUsage	SERVICE LINK + RUN TIME + WAIT TIME	Or use absolute passing times
Txc:VehicleJourneyStopUsage	CALL / ARRIVAL, CALL DEPARTURE	Or use POINT IN JOURNEY PATTERN + PASSING TIME
Txc:VariableStopAllocation	STOP ASSIGNMENT	
Txc:DefaultStopAllocation	STOP ASSIGNMENT	
Txc:Interval	JOURNEY FREQUENCY GROUP, HEADWAY FREQUENCY GROUP, RHYTHMICAL FREQUENCY	Use with TEMPLATE vehicle Journey
Txc:VehicleJourneyInterchange	SERVICE JOURNEY INTERCHANGE	

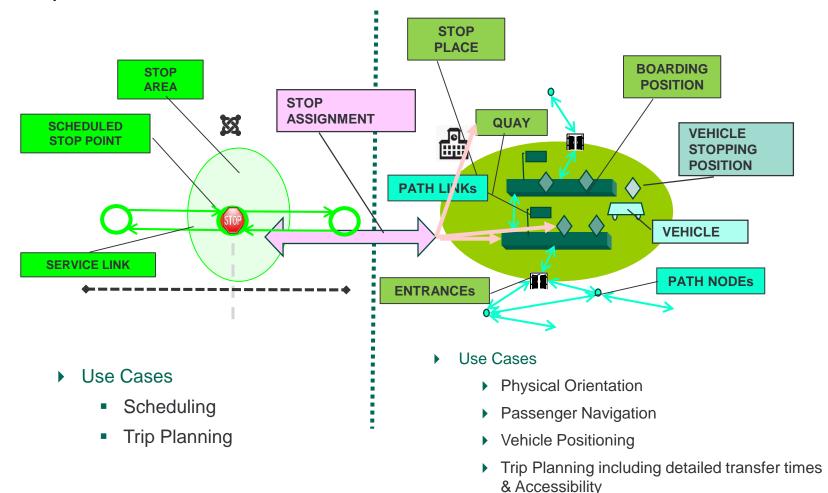
UK Timetable NeTEx Profile

Technical detail

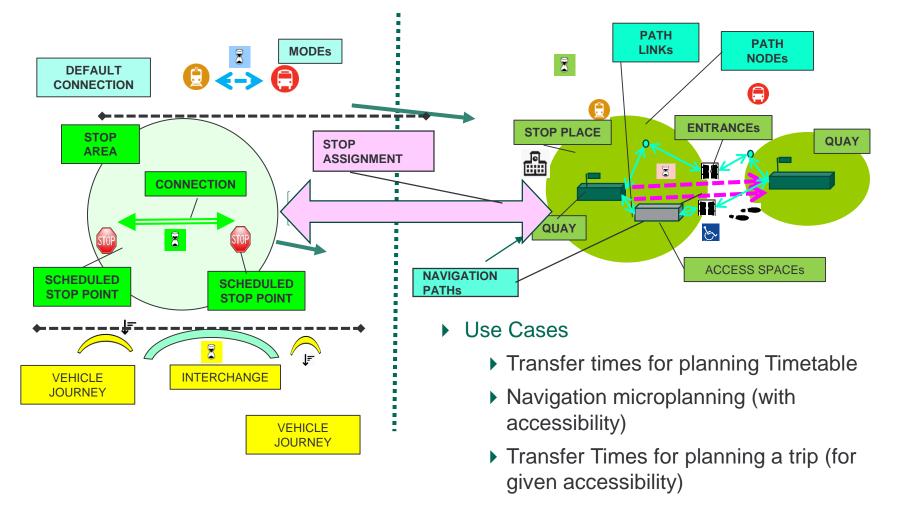

33

Mapping of Stops

Connections & Interchanges in the timetable


 Classical representation of an interchange is just as Station / Stops – NAPTAN has just STOP POINTs STOP AREA

Timetabled Stop vs Physical Stop



Timetable Connection

Physical Connection

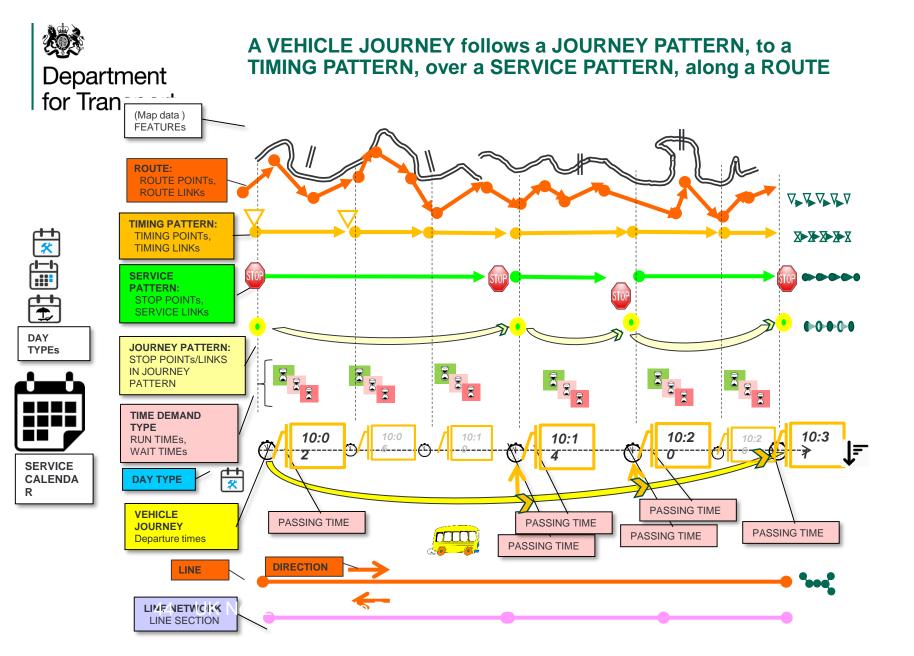
Example XML mapping from NAPTAN to NeTEx – a NaPTAN Stop Point

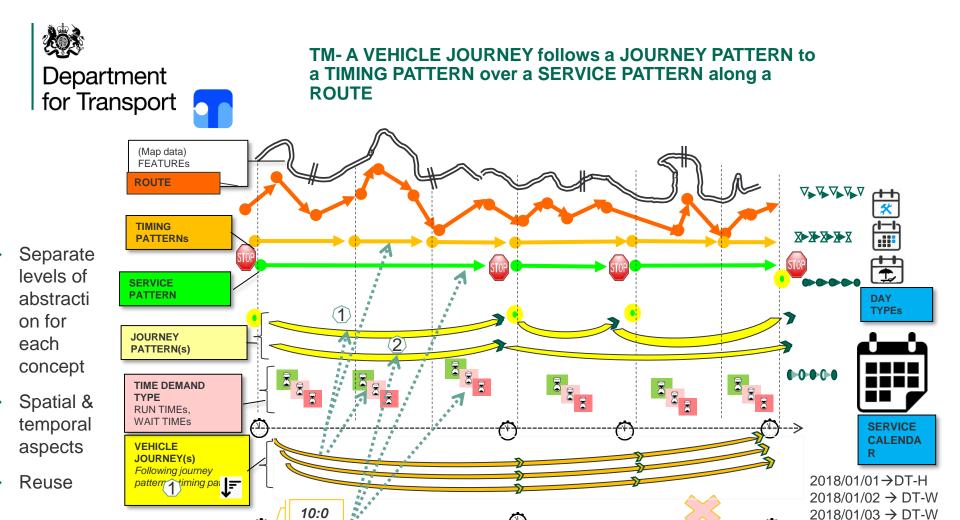
- Straightforward mapping of stop data
 - ▶ Physical data from NaPTAN:StopPoint → NeTEx:QUAY
 - ▶ Schedule data from NaPTAN:StopPoint → NeTEx:SCHEDULED STOP POINT
 - Can use STOP ASSIGNMENT to group together
 - Can use same id
 - Use Naptan Namespace
 - ▶ Can annotate with legacy NaPTAN Stop type codes to facilitate round trip export
- In NeTEx timetables can just use STOP POINT REF
- In NeTEx Stop definitions group as all three

NapTan Stop in NeTEx -XML Code Snippet


```
<PassengerStopAssignment version="any" ... order="0">
           <ScheduledStopPoint version="any" created="2004-06-09T14:20:00-05:00" responsibilitySetRef="nptgUkAdministrativeArea:060"</p>
id="naptStop:260010966">
                 <Name>Netherley Road</Name>
                 <TimingPointStatus>timingPoint</TimingPointStatus>
                 <AllowedForWaitTime>PT0M</AllowedForWaitTime>
                 <stopAreas>
                       <StopAreaRef version="0" ref="naptArea:060G000001"/>
                 </stopAreas>
                 <StopType>onstreetBus</StopType>
                 <VehicleModes>bus</VehicleModes>
           </ScheduledStopPoint>
           <StopPlace version="any" id="naptStop:260010966" responsibilitySetRef="nptgUkAdministrativeArea:060">
                 <Name>Netherley Road</Name>
                 <TopographicPlaceView>
                            <TopographicPlaceRef ref="nptgUkLocality:E0000004"/> <Name>Aberdeen</Name>
                 </TopographicPlaceView>
                 <quays>
                       <Quay id="naptStop:260010966" version="1">
                            <Centroid> <Location><qml:pos srsName="UKOS">442914</qml:pos> </Location> </Centroid>
                            <placeTypes>
                                  <TypeOfPlaceRef version="napt:v2.1" ref="napt:StopClassification@BCT"/>
                                  <TypeOfPlaceRef version="napt:v2.1" ref="napt:StopType@MKD"/>
                             </placeTypes>
                            <RoadAddress version="any" id="naptStop:260010966@address">
                                  <RoadName>Netherley Road</RoadName>
                                  <BearingCompass>N</BearingCompass>
                             </RoadAddress>
                            <TransportMode>bus</TransportMode>
                            <QuayType>busStop</QuayType>
                       </Quay>
                 </quays>
           </StopPlace>
```


Mapping of Journey Patterns, Timing Patterns & Journeys




Networks Layers and Patterns

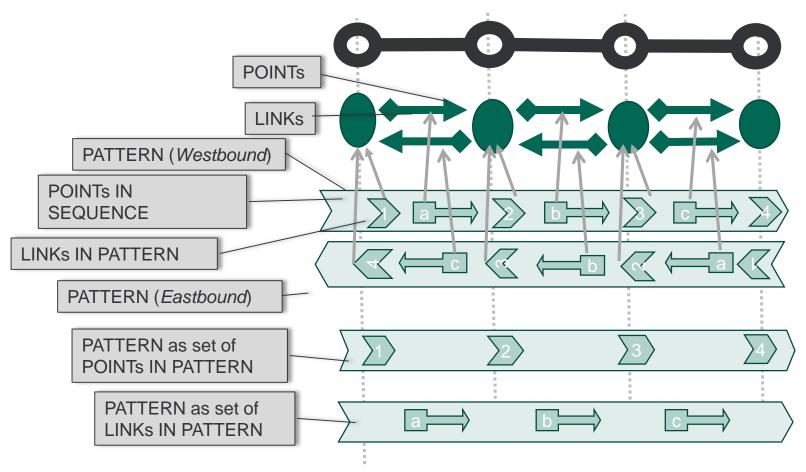
- Transmodel separates concerns into different layers of network, represented using PATTERNs of POINTs & LINKs ("i.e. directed graphs of nodes and edges")
 - ROUTES, SERVICE PATTERNS, TIMING PATTERN, JOURNEY PATTERNS, etc.
 - Allows rapid, reusable specification f, easy propagation of changes, compact description of many journeys, sharing of common reference data

POINTs Vs LINKs

- ▶ For many purposes, either a sequence of points (POINTs in PATTERN) or a sequence of links (LINKs in PATTERN) is sufficient to describe
- ▶ For some purposes, both are needed,
 - E.g. TIMING PATTERN; to attach RUN TIMEs (on LINK) and WAIT TIMEs (on POINT)
- Exchanging: When designing an exchange format, use only one sequence (To avoid conflicting data)
 - TransXChange: →Series of LINKs
 - GTFS → Series of POINTs
 - **NeTEx** Either, depending on profile
 - NeTEx EU Profile → Series of Points

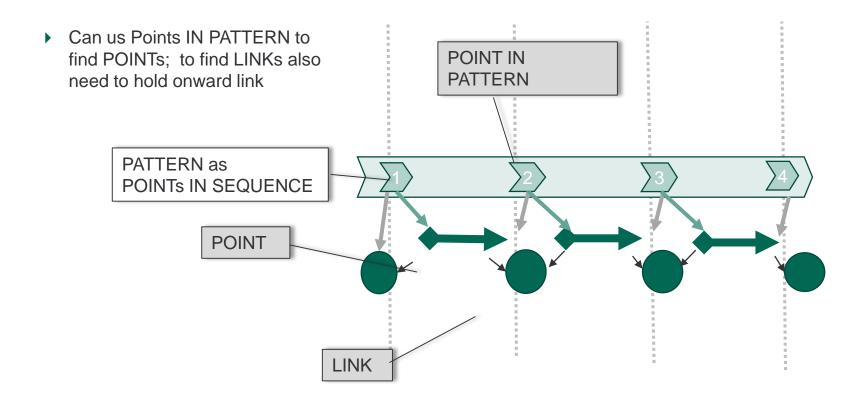
10:1

VEHICLE

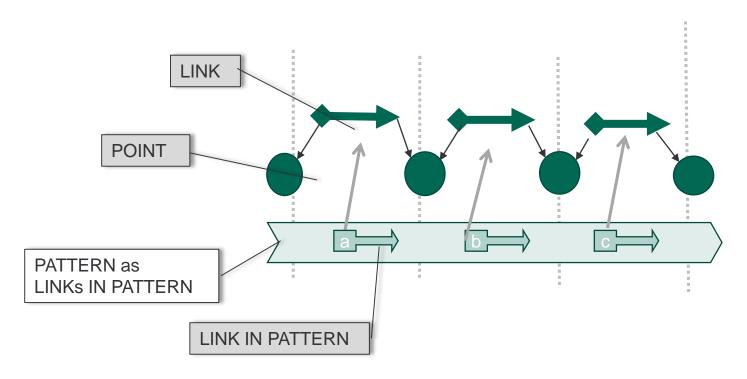

pattern

JOURNEY(s) Followin 2 purnesetc

2018/01/04 → DT-WE

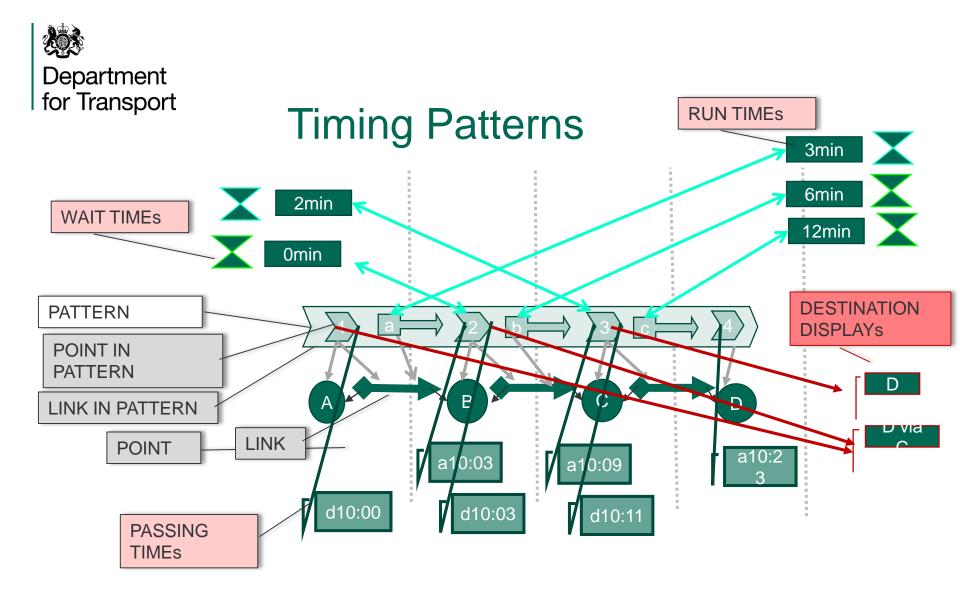

Modelling a transport network layer – Patterns: Sequences of Points / Links

▶ Functionally equivalent

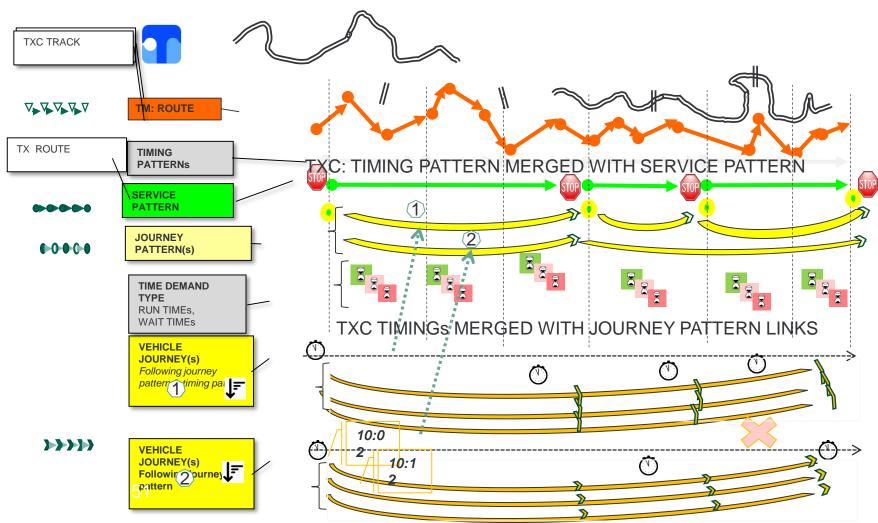

Patterns as sequences of Points

Patterns as sequences of Links

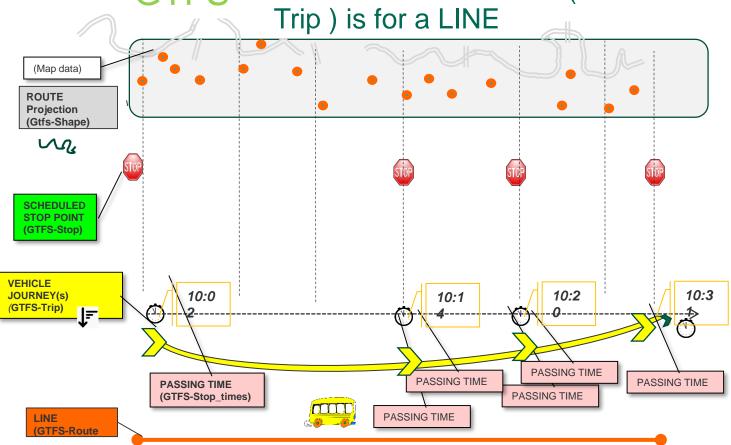
TransXChange uses sequence of LINKs for

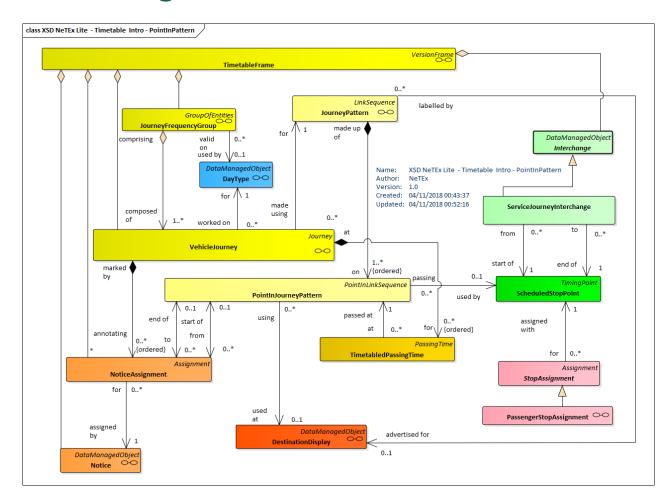

▶ Functionally equivalent

Timing Patterns

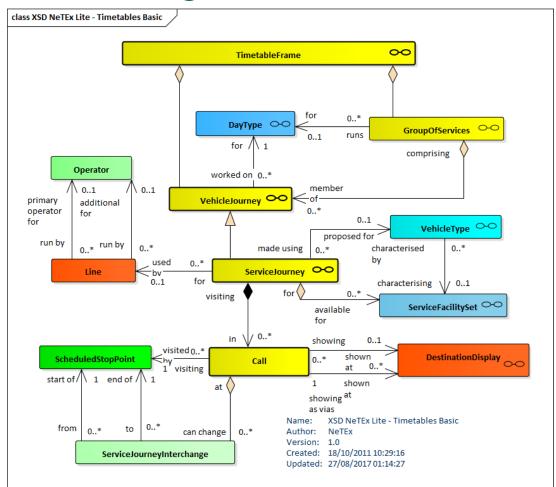

- ▶ Timings for traversing links and waiting at stops /timing points are held separately
 - ▶ RUN TIME, WAIT TIME, for each stop and link
 - May have different sets for different times of day / day types (TIME DEMAND TYPES)
- Timings for a journey may be specified by a start time, then applying timings
- Allows rapid specification, easy propagation of changes, compact description of many journeys

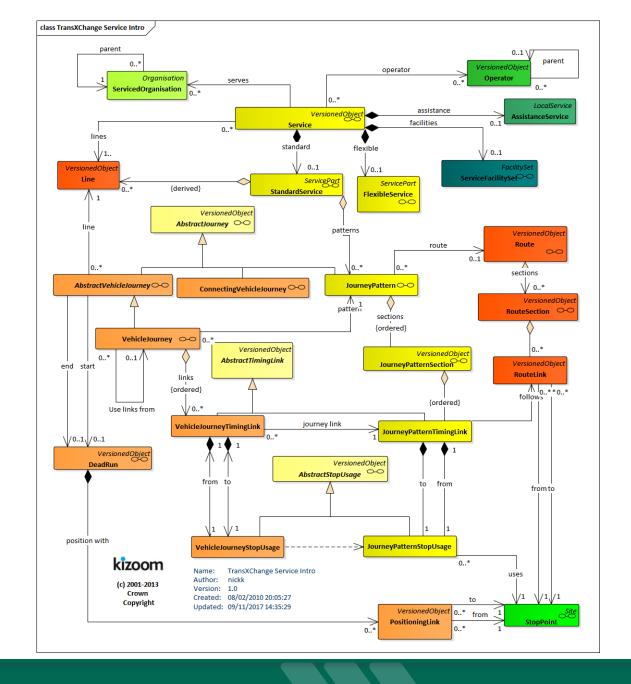
Run	Link	Wait	Stop	J1	J2	J3
		0	А	d10:00	d10:30	d11:00
2 min	A→B		В	a10:02	a10:32	a11:02
		1min		d10:03	d10:33	d11:03
4 min	в→с		С	a10:07	a10:37	a11:07
		3min		d10:10	d10:40	d11:10
10 min	C→D		D	a10:20	a10:50	a11:20
		1min		d10:03	d10:33	d11:03


TransXChange: Transmodel 5.1 Layers / and options were reduced by use of Views


GTFS A VEHICLE JOURNEY (Gtfs-Trip) is for a LINE

- Only stops are reused
- Timing is absolute and repeated on each journey
- No info on **SCHEDULED** STOP POINT (GTFS-Stop) atio n


Representation of a Timetable in NeTEx using POINT IN PATTERN


Representation of a Timetable in NeTEx using CALLs

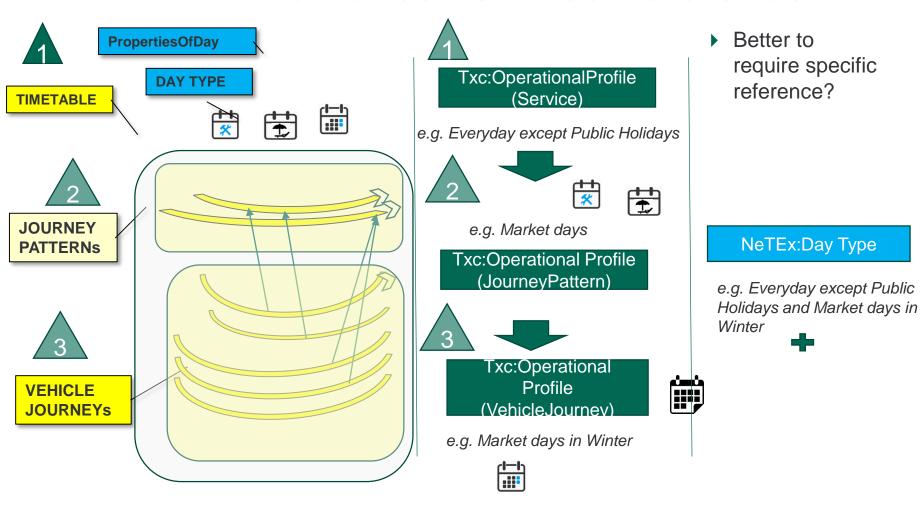
A Call is a view
 element assembling
 data from several
 normalised
 components to make
 timetable
 descriptions simple –
 lots of attributes

TXC Service Journey model

Mapping of Day Types

Temporal conditions in TransXChange vs NeTEx

- TransXChange ,
 - Temporal conditions specified on "OperationalProfile"
 - Days of Week and holidays, also specific dates
 - ▶ Can be specified on Timetable, Journey Pattern, Vehicle journey level
 - Automatically Combined to specify conditions for each individual journey
 - Optimised for presentation
 - Complex / Error prone to implement. May contradict
- ▶ In TXC 2.5 SERVICE CALENDAR calendar allowed for Schools etc.
- Simpler to do explicitly (as in NeTEx!) Same end result
 - Temporal and spatial more clearly separated:
 - Undated Timetables (DAY TYPEs) vs Dated Timetables (+ SERVICE CALENDAR)
 - DAY TYPEs, PROPERTIES OF DAYS
 - Can have predefined common UK set assigned to UK holidays
 - Each VEHICLE JOURNEY specifies DAY TYPEs
 - ▶ SERVICE CALENDAR to assign DAY TYPE to dates if desired



Day types and Service Journeys

Day Types & Validity conditions Inheritance vs Direct reference

Mapping of Sections

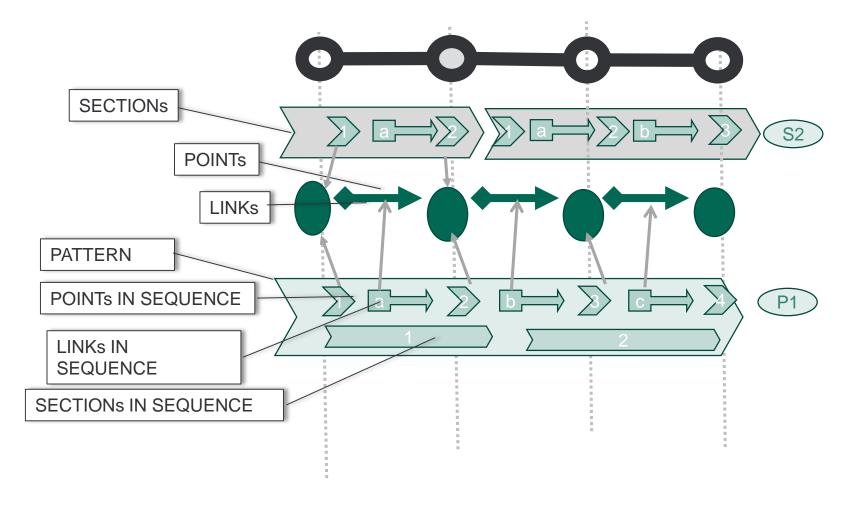
Coding similar Journey Patterns

A-D – (Dense)

TXC always use of sections

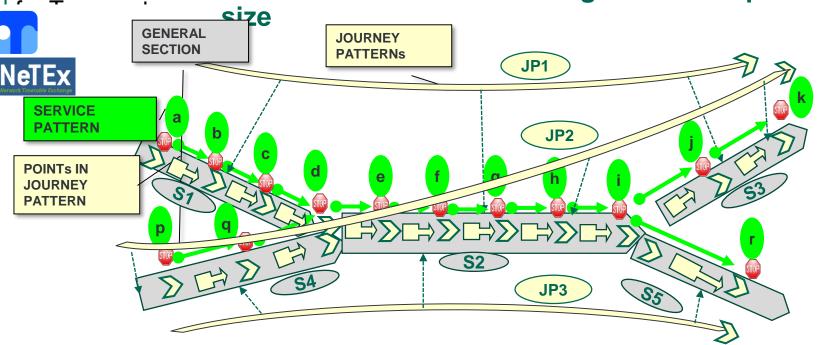
- More concise if there are variations on a pattern, not otherwise
- Added complexity

NeTEx supports


Options

- Always use
- Drop (Would lose round trip info)
- Allow optional use

	10:00	10:12	10:2 0	102 3	
Α	h:m	h:m			04
В	h:m	h:m			S1
С	h:m	h:m	h:m	h:m	
С	h:m	h:m	h:m	h:m	
D	h:m	h:m	h:m	h:m	00
Α	h:m	h:m	h:m	h:m	S2
В	h:m	h:m	h:m	h:m	
С	h:m	h:m	h:m	h:m	
С	h:m	h:m			Ca
D	h:m	h:m			S3



Modelling a network - Sections

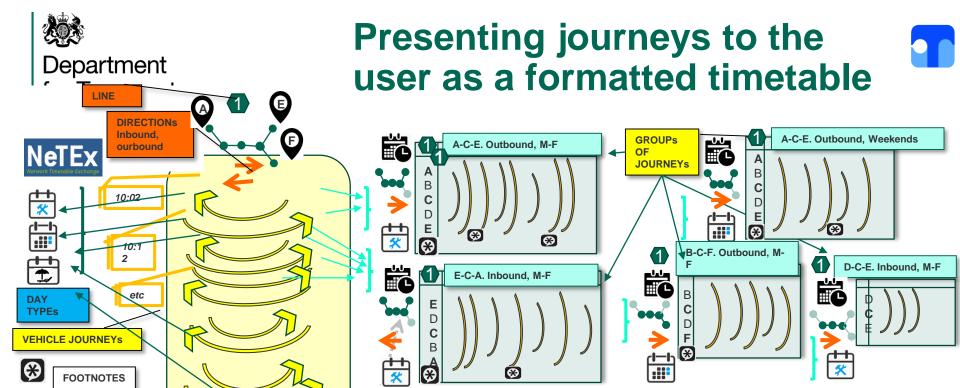
SECTIONs: Reusable sequences of points & Links – Used in TransXChange to reduce pattern

- Often many different route variants, similar but with slight differences
 - Routes can be very long (150 stops +)
- A SECTION allows reuse of sequences of points or links in multiple Patterns
 - Less verbose, because reuse of section definitions

JOURNEY PATTERNS

$$JP1 = S1 + S2 + S3 = a$$
, b, c, d, e, f, g, h, i, j, k
 $JP2 = S4 + S2 + S3 = p$, q, e, f, g, h, i, j, k
 $JP3 = S4 + S2 + S5 = p$, q, e, f, g, h, i, r

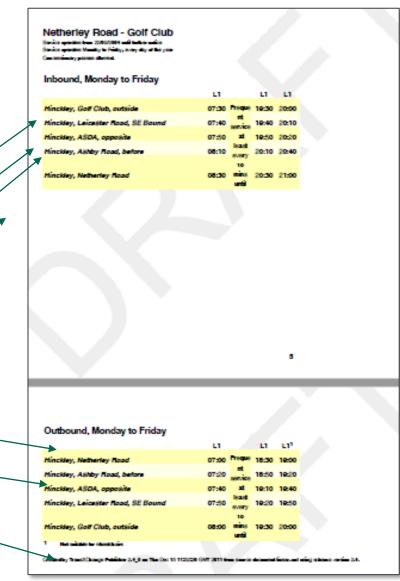
Mapping of Journey Groupings


Presentation of Journeys for PI

- ▶ TransXChange, allows a subgrouping of journeys within a timetable
 - Important for visualisation of timetables for a line: which journeys should be grouped together?
 - Needed for EBSR
 - Needs to be optimised to avoid "sparse" timetables from dissimilar patterns (artefact of EBSR?)
- ▶ In TXC 2.1 the grouping is only automatic inferred by publisher
 - Up to six combinations → [Weekdays, Sat, Sun] x [Inbound, Outbound]
- ▶ In TXC 2.5, arbitrary groupings also allowed
 - Still doesn't handle sparse timetables very well (where there is judgement needed)
- Simpler to do explicitly (as in NeTEx!)
 - Any arbitrary named grouping
 - Create "Built in" groupings corresponding to existing TXC Publisher use

Presentation of Journeys for Passenger Information and verification

- ▶ **Grouping of Services** TransXChange, (unlike GTFs) allows a subgrouping of journeys within a timetable
 - ▶ Important for visualisation of timetables for a line : which journeys should be grouped together to present?
 - Outbound Journeyneys A to B, Monday to Friday, Inbound journeys B to A
 - Needed for EBSR manual verification (TXC Publisher uses)
 - ▶ Needs to be optimised to avoid "sparse" timetable layouts arising from journeys with very from dissimilar patterns
 - This may be an artefact of EBSR licensing costs: Operators incentivised operators to bundle together as many joruneys as posisbel on the same registration
- ▶ In TXC 2.1 the grouping is only automatic inferred by publisher
 - Up to six combinations → [Weekdays, Sat, Sun] x [Inbound, Outbound]
- In TXC 2.5 the grouping arbitrary user defined groupings also allowed
 - Still doesn't handle sparse timetables very well (where there is
- Simpler to do explicitly (as in NeTEx!)
 - Any arbitrary named grouping can be specified as a GROUP OF SERVICES

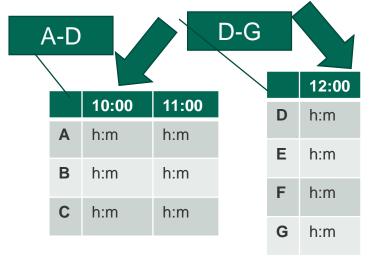

SERVICE CALENDAR

2018/01/01=DT-H 2018/01/02=DT-W 2018/01/03=DT-W 2018/01/04=DT-WEetc

- A set of timetable data for a given line may include journeys following many different patterns, in different directions and subject to different validity conditions
- To the user this is usually presented in subsets of similar data by direction, etc.
 - E.g. Weekday outbound, Weekday inbound, Saturday outbound, Sunday outbound, etc
 - E.g. Journeys for Patterns A-B-C-E, A-D-C-E, A-B-F, B-C-E, etc
- Number of useful sub groupings depends on size & complexity of data set
- If journey patterns are disimilar get verbose "Sparse" timetables

TXC: Assignment of journeys to service groups for presentation

Grouping Journeys

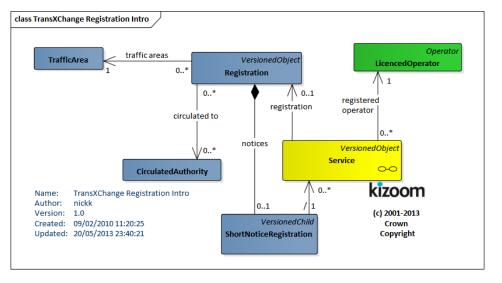

A-D — (Dense)

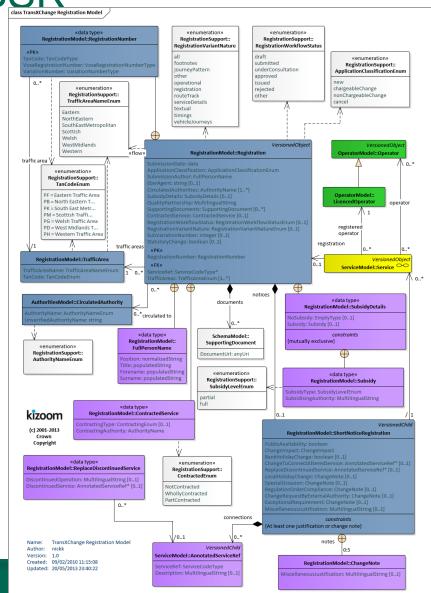
- For optimum readability and use of space, journeys need to be :
 - Rows ordered vertically by common journey pattern
 - Columns ordered horizontally by time
 - Grouped by JOURNEY PATTERN
 - Grouped by DAY TYPF

/					
	10:00	10:12	10:20		
Α	h:m	h:m			
В	h:m	h:m	h:m		
С	h:m	h:m	h:m		
С	h:m	h:m			
D	h:m	h:m	h:m		

A-G (Sparse!)

	10:00	11:00	12:00
Α	h:m	h:m	
В	h:m	h:m	
С	h:m	h:m	
D	h:m	h:m	
Е			h:m
F			h:m
G			h:m




Mapping of EBSR data elements

TXC Registration – UK specific Function for EBSR

- Registration has elements UK specific to UK processes
 - Registration, Short Notice Registration,
 - TrafficArea, Circulated Authority
 - Subsidy, Supporting documents etc
- Some of these are in TxC:Registration, others are spread around Txc:Service, , Txc:Operator, Txc:VehicleJourney and elsewhere
 - ▶ E.g. VOSA licences, subsidy basis, etc

Summary